--> Produced by MATCAL Program
--> The Nth term in an A.P is given by the equation below
--> N(th) = [ a + ( n - 1 ) x d ] , Incremental value = 4
--> N = The nth term to be found, a = first term, d = common
difference
--> 7th = a + ( 7 - 1 ) x d
--> 7th = a + ( 6 ) x d
--> 7th = a + 6d
--> 4th of the A.P = a + 3d
--> 4th = a + ( 4 - 1 ) x d
--> 4th = a + ( 3 ) x d
--> 4th = a + 3d
--> 4th of the A.P = a + 3d
--> 7th = a + 6d = 4th = a + 3d
--> a + 6d = 4 x ( a + 3d ) + 11
--> a + 6d = 4 x ( a + 3d ) + 11
--> a + 6d = 4 x ( a + 3d ) + 11
--> a + 6d = 4a + 12d + 11
--> Combine like terms together
--> -3a + -6d = 11
--> -3a + -6d = 11 --> Eq(1)
--> Sum of the terms = 19 , and the N(th) term = 15
--> Sum of the terms = S(n) = n / 2 [2a + (n-1) x d]
--> 19 = 15 / 2 [2a + (15 -1) x d]
--> 19 = 7.5 x [2a + (15 -1) x d]
--> 19 = 7.5 x [2a + ( 14 ) x d]
--> 19 = 7.5 x [ 2a + 14d ]
--> 19 = 15a + 105d
--> 19 = 15a + 105d --> Eq(2)
--------------------------------------->
--> -3a + -6d = 11 --> Eq(1)
--> 15a + 105d = 19 --> Eq(2)
--------------------------------------->
--> Solving by matrices
--------------------------------------->
--> Solving for the value of the determinant =
--> [ -3 -6 | 11 ]
--> [ 15 105 | 19 ]
--------------------------------------->
--> Det = [ -3 x 105 - 15 x -6 ]
--> Det = -3 x 105 - 15 x -6
--> Det = -225
--> Det = -225.00
--> Produced by MATCAL Program
--> Solving for the value of a =
--> [ 11 -6 ]
--> [ 19 105 ]
--> a = [ 11 x 105 - 19 x -6 ]
--> a = 1269
--> a = 1269 / -225
--> a = -5.64
--> Produced by MATCAL Program
--> Solving for the value of d =
01-09- Everything.mp3
--> [ -3 11 ]
--> [ 15 19 ]
--> d = [ -3 x 19 - 15 x 11 ]
--> d = -222
--> d = -222 / -225
--> d = 0.986666666666667
--> Produced by MATCAL Program
15 - In The Air Tonight.mp3