--> Solve for the solution of the given function/equation at the 

--> given place/value on the interval of -Inf <= X <= +Inf.

--> [-Inf , +Inf ].

--> 5TanXCosX -8CosX = 4

--> F(X) = 4





--> Produced by MATCAL Program 

--> Solving for the roots of the sinosodial(trig) equation 

--> 5TanXCosX -8CosX = 4 ,         Eq(1)

--> Using the trigonometrical identities 

--> Tan(A) = Sin(A) / Cos(A) 

--> Replace Tan(A) with the identity above to eliminate the 

Tan(A)  

--> 5Sin(A) / Cos(A) x CosX -8CosX = 4 ,         Eq(1)

--> Divide the right side by Cos(A) to reduce the fraction 

--> 5Sin(A) x  -8CosX = 4 ,         Eq(1)

--> Move the -8Cos(A) to the right side ,         Eq(1)

--> 5Sin(A) x  = 4 + 8CosX ,         Eq(2)

--> From the identity table , Sin(A)^2 + Cos(A)^2 = 1 , and 

Sin(A) = Sqrt( 1 - Cos(A)^2 )

--> Replace the Sin(A) in the Eq(2) with the identity in Eq(3) 

--> 5Sqrt( 1 - Cos(A)^2 ) = 4 + 8CosA ,         Eq(4)

--> Square both sides of the equation to eliminate the radical on 

the right hand side 

--> 5^2( 1 - Cos(A) )^2 = ( 4 + 8CosA )^2 ,         Eq(4)

--> 25( 1 - Cos(A) ) = ( 4 + 8CosA )^2 ,         Eq(4)

--> 25( 1 - Cos(A) ) = ( 4 + 8CosA ) x ( 4 + 8CosX ) ,          Eq(4)

--> 25 -25Cos(A) =  16 + 32Cos(A) + 32Cos(A) + 64Cos(A)^2 ,            

 Eq(4)

--> Combine all like terms together

--> 25 -25Cos(A) =  16 + 64Cos(A) + 64Cos(A)^2 ,             Eq(4)

--> 0 =  -9 + 64Cos(A) + 89Cos(A)^2 ,             Eq(4)

--> 0 =  64Cos(A)^2 + 89Cos(A) -9  ,             Eq(4)

-->  64Cos(A)^2 + 89Cos(A) -9 = 0  ,             Eq(4)

--> Let Y = Cos(X) , and Y^2 = Cos(A)^2 

-->  89Y^2 + 64Y -9 = 0  ,             Eq(4)

--> Solve for the zero(s)/roots of the equation using the 

quadratic formula 

--> Solve for the value of X using quadratic formula 

--> The quadratic formula is  X = (-b (+&-1) Sqrt(b^2 - 4ac) ) / 2a 

-->  89Y^2 + 64Y -9 = 0  ,             Eq(4)

--> a = 89 , b = 64 c = -9

--> Y = - 64 + Sqrt(64^2 - 4 * 89 * -9) / 2 * 89

--> Y = - 64 - Sqrt(64^2 - 4 * 89 * -9) / 2 * 89

--> Y = - 64 + Sqrt(4096 - 4 * -801) / 2 * 89

--> Y = - 64 - Sqrt(4096 - 4 * -801) / 178

--> Produced by MATCAL Program 

--> Y = - 64 + Sqrt(4096 - 4 * -801) / 178

--> Y = - 64 - Sqrt(4096 - 4 * -801) / 178

--> Y = - 64 + Sqrt(4096 + 3204) / 178

--> Y = - 64 - Sqrt(4096 - 3204) / 178

--> Y = - 64 + Sqrt(7300) / 178

--> Y = - 64 - Sqrt(7300) / 178

--> Y = - 64 + (85.4400374531753) / 178

--> Y = - 64 - (85.4400374531753) / 178

--> Y = 21.4400374531753 / 178

--> Y = -149.440037453175 / 178

--> Tan(A) = 0.120449648613344

--> Tan(A) = -0.83955077220885

--> Tan(A) = (Root/zero) = 0.12

--> Tan(A) = (Root/Zero) = -0.84

--> Tan(A) = (Root/zero) = 0.12

--> Tan(A) = (Root/Zero) = -0.84

-- > The are two solutions for the function to exist which are .

--> Tan(A) = (Root/zero) = 0.12

--> Tan(A) = (Root/Zero) = -0.84

--> A = ArcTan (0.12)

--> A = Arctan (-0.84)

--> A = 6.84002030832302

--> A = -40.0141535976838

--> Angle(A) = 6.84

--> Angle(A) = -40.01

--> Cos(A) = 0.12

--> A = ArcCos(0.12)

--> Angle(A) = 83.0744599974608

--> Angle(A) = 83.07

--> A = ArcCos(-0.84)

--> Angle(A) = 147.080919634093

--> Angle(A) = 147.08

--> Produced by MATCAL Program 

--> Checking Process / Stages

--> 5TanXCosX -8CosX = 4 ,         Eq(1)

--> 5 x Tan83.0744599974608Cos83.0744599974608 

-8Cos83.0744599974608 = 4 ,         Eq(1)

--> 5 x 8.27311576399391 x 0.12 -8 x 0.12 = 4 ,         Eq(1)

--> 5 x 8.27311576399391 x 0.12 -8 x 0.12 = 4 ,         Eq(1)

--> 4.00386945839634 = 4 ,         Eq(1)

--> 4.00 = 4 ,         Eq(1)

--> Produced by MATCAL Program 

15 - Circle Of Life.mp3

Felix liberty one life to live.mp3

Make a free website with Yola