--> Using The Cosine Rule/Formula, a = 9, b = 14, c = 6

--> b^2 = a^2  +  c^2  - 2(a x c) x Cos(B),  

Angle (B) = Required (?) 

-->  14^2  =  9^2 + 6^2 -  ( 2 x 9 x 6 x  Cos(B ) )

-->  196  =  81 + 36 - ( 2 x 54Cos( B ) )

-->  196  =  81 + 36 - ( 2 x 54 x Cos(B )

-->  196  =  36 + 81 - (108Cos( B ) )

-->  117  - 196  =  (-108Cos( B ) )

-->  (-108Cos( B ) )  =  196  - 117

-->  (-108Cos( B ) )  =  79

-->  Cos( B )   =  79  /  -108

-->  Cos( B )   =  -0.731481481481482

-->  B  =  ArcCos(-0.731481481481482)

-->  B  =  Cosine(-0.731481481481482) ^-1

-->  Angle(B)  =  136.955611514315

-->  Angle(B)  =  136.96

-->  Angle(B)  =  136.96 d

-->  Angle(B)  =  136.96º 

--> Finding \ Solving For Angle(A) 

--> a^2 = b^2  +  c^2  - 2(b x c) x Cos(A),  

Angle (A) = Required (?) 

-->  6^2  =  14^2 + 9^2 -  ( 2 x 9 x 14 x  Cos(A ) )

-->  36  =  196 + 81 - ( 2 x 126Cos( A ) )

-->  36  =  196 + 81 - ( 2 x 126Cos( A ) )

-->  36  =  277 - ( 2 x 126Cos( A ) )

-->  36  =  277 - 252Cos( A ) 

-->  -252Cos( A )  =  36  -  277

-->  -252Cos( A )  =  -241

-->  Cos( C )  =  -241  /  -252

-->  Cos( A )  =  0.956349206349206

-->  A   =  ArcCos(0.956349206349206)

-->  A   =  Cos(0.956349206349206) ^-1

-->  A   =  16.9844507051604

-->  A   =  16.98

-->  A   =  16.98 d

-->  A   =  16.98º 

--> Using The Sine Rule/Formula

--> c / Sin(C) = b / Sin(B)--> 6 / Sin(16.9844507051604)  = 

 14 / Sin(B)

--> 6 x Sin(B)  =  14  x  Sin(16.9844507051604)

--> 6 x Sin(B)  =  14  x  0.292226274512137


--> 6 x Sin(B)  =  4.09116784316992

-->   Sin(B)  =  4.09116784316992  /  6

-->   Sin(B)  =  0.681861307194987

-->   B  =  ArcSin(0.681861307194987)

-->   B  =  Sin(0.681861307194987)^-1

-->   B  =  42.971967736737

-->   B  =  42.97

-->   B  =  42.97 d

-->   B  =  42.97º 

--> The Value Obtain Using The Cosine Formula And The Sine Does Not Match \ The Same.

--> It Shows That One Angle May Be In The Right Quadrant While The other Is In Another Quadrant

--> To Complete The Reflex Angle Of 180º Needed For The Right Angle .

--> c^2 = a^2  +  b^2  - 2(a x b) x Cos(C),  Angle (C) = Required (?) 

-->  9^2  =  14^2 + 6^2 -  ( 2 x 14 x 6 x  Cos(C ) )

-->  81  =  196 + 36 - ( 2 x 84Cos( C ) )

-->  81  =  196 + 36 - ( 2 x 84 x Cos(C )

-->  81  =  196 + 36 - (168Cos( C ) )

-->  81  =  232 - (168Cos( C ) )

-->  81  - 232  =  (-168Cos( C ) )

-->  (-168Cos( C ) )  =  81  - 232

-->  (-168Cos( C ) )  =  -151

-->  Cos( C )   =  -151  /  -168

-->  Cos( A )   =  0.898809523809524

-->  C  =  ArcCos(0.898809523809524)

-->  C  =  Cosine(0.898809523809524) ^-1

-->  Angle(C)  =  25.9875170315767

-->  Angle(C)  =  25.99

-->  Angle(C)  =  25.99 d

-->  Angle(C)  =  25.99º 

-->  Sum Of the Angle In A Triangle Is Equal To 180 Degrees ( 180º) 

-->  <A  +  <B  +  <C  =  180 Degrees  [ 180º ] 

-->  180  =  136.955611514315  +  16.9844507051604  +  25.9875170315767

-->  180  =  179.927579251052

-->  180  =  179.93º 

-->  180  =  179.93º 

-->  The Sum Of the Angles Obtain Is Equal To 180 And All Angles Obtain Are Correct. 

It Is All Coming Back To Me.mp3

 Checking for the result \ answer(s) obtained below..........

Sin(Q)  = Opp / Hyp

Q = 90 - 43

Q = 47 d

Sin(47) = 11 / H

H x Sin(47)  =  11

H  =  11 / Sin(47)

H  =  11 / 0.73135

H  =  15.0406

H  =  15.04 m

H^2  =  K^2  +  J^2

K^2  =  H^2  -  J^2

K  = Sqrt(H^2  -  J^2)

K  =  Sqrt[15.04^2  -  11^2]

K  =  Sqrt[226.22  -  121]

K  =  Sqrt[105.22]

K   =  10.26m

180  =  B  +  Q (Sum of the angles on a straight line)

B  =  180  -  Q

B  =  180  -  47

B  =  133

B  =  133 d

01 - Like A Prayer (Album Version).mp3

Make a free website with Yola