--> Using The Cosine Rule/Formula, a = 9, b = 14, c = 6
--> b^2 = a^2 + c^2 - 2(a x c) x Cos(B),
Angle (B) = Required (?)
--> 14^2 = 9^2 + 6^2 - ( 2 x 9 x 6 x Cos(B ) )
--> 196 = 81 + 36 - ( 2 x 54Cos( B ) )
--> 196 = 81 + 36 - ( 2 x 54 x Cos(B )
--> 196 = 36 + 81 - (108Cos( B ) )
--> 117 - 196 = (-108Cos( B ) )
--> (-108Cos( B ) ) = 196 - 117
--> (-108Cos( B ) ) = 79
--> Cos( B ) = 79 / -108
--> Cos( B ) = -0.731481481481482
--> B = ArcCos(-0.731481481481482)
--> B = Cosine(-0.731481481481482) ^-1
--> Angle(B) = 136.955611514315
--> Angle(B) = 136.96
--> Angle(B) = 136.96 d
--> Angle(B) = 136.96º
--> Finding \ Solving For Angle(A)
--> a^2 = b^2 + c^2 - 2(b x c) x Cos(A),
Angle (A) = Required (?)
--> 6^2 = 14^2 + 9^2 - ( 2 x 9 x 14 x Cos(A ) )
--> 36 = 196 + 81 - ( 2 x 126Cos( A ) )
--> 36 = 196 + 81 - ( 2 x 126Cos( A ) )
--> 36 = 277 - ( 2 x 126Cos( A ) )
--> 36 = 277 - 252Cos( A )
--> -252Cos( A ) = 36 - 277
--> -252Cos( A ) = -241
--> Cos( C ) = -241 / -252
--> Cos( A ) = 0.956349206349206
--> A = ArcCos(0.956349206349206)
--> A = Cos(0.956349206349206) ^-1
--> A = 16.9844507051604
--> A = 16.98
--> A = 16.98 d
--> A = 16.98º
--> Using The Sine Rule/Formula
--> c / Sin(C) = b / Sin(B)--> 6 / Sin(16.9844507051604) =
14 / Sin(B)
--> 6 x Sin(B) = 14 x Sin(16.9844507051604)
--> 6 x Sin(B) = 4.09116784316992
--> Sin(B) = 4.09116784316992 / 6
--> Sin(B) = 0.681861307194987
--> B = ArcSin(0.681861307194987)
--> B = Sin(0.681861307194987)^-1
--> B = 42.971967736737
--> B = 42.97
--> B = 42.97 d
--> B = 42.97º
--> The Value Obtain Using The Cosine Formula And The Sine Does Not Match \ The Same.
--> It Shows That One Angle May Be In The Right Quadrant While The other Is In Another Quadrant
--> To Complete The Reflex Angle Of 180º Needed For The Right Angle .
--> c^2 = a^2 + b^2 - 2(a x b) x Cos(C), Angle (C) = Required (?)
--> 9^2 = 14^2 + 6^2 - ( 2 x 14 x 6 x Cos(C ) )
--> 81 = 196 + 36 - ( 2 x 84Cos( C ) )
--> 81 = 196 + 36 - ( 2 x 84 x Cos(C )
--> 81 = 196 + 36 - (168Cos( C ) )
--> 81 = 232 - (168Cos( C ) )
--> 81 - 232 = (-168Cos( C ) )
--> (-168Cos( C ) ) = 81 - 232
--> (-168Cos( C ) ) = -151
--> Cos( C ) = -151 / -168
--> Cos( A ) = 0.898809523809524
--> C = ArcCos(0.898809523809524)
--> C = Cosine(0.898809523809524) ^-1
--> Angle(C) = 25.9875170315767
--> Angle(C) = 25.99
--> Angle(C) = 25.99 d
--> Angle(C) = 25.99º
--> Sum Of the Angle In A Triangle Is Equal To 180 Degrees ( 180º)
--> <A + <B + <C = 180 Degrees [ 180º ]
--> 180 = 136.955611514315 + 16.9844507051604 + 25.9875170315767
--> 180 = 179.927579251052
--> 180 = 179.93º
--> 180 = 179.93º
--> The Sum Of the Angles Obtain Is Equal To 180 And All Angles Obtain Are Correct.
It Is All Coming Back To Me.mp3
Checking for the result \ answer(s) obtained below..........
Sin(Q) = Opp / Hyp
Q = 90 - 43
Q = 47 d
Sin(47) = 11 / H
H x Sin(47) = 11
H = 11 / Sin(47)
H = 11 / 0.73135
H = 15.0406
H = 15.04 m
H^2 = K^2 + J^2
K^2 = H^2 - J^2
K = Sqrt(H^2 - J^2)