The rate at which the population of a state in the nation is growing --> is expressed by by this function after several studies over the years and --> concluded approximations (Census). The defined function is given as P(t) --> where $P(t) = 12t^2 + 3t + 22045$ and t is measured in years i.e the --> number of years to come while P(t) stands for the population rate/number --> for a particular year or years to come. The other function - D(t) = 33t -125 represent the death rate over a given period of time (t) and --> it is measured in years also. The D(t) stands for the number death for a --> particular year or years. Also, the function M(t) stands for the migration --> rate to the other areas/lands for any year(s) required. --> M(t) = 75t + 130 where t is measured in years and M(t) represents --> the number of people that are leaving the state for another place to leave --> or reside. Everything in the state is put in an orderly way to maintain rules --> and regulation for better leaving and better future. Another state in the same --> country records her own population rate and expressed it as a function of --> time (t) which is also measured in years. The derived population function for --> the state is given as Pq(t) and $Pq(t) = 5t^2 + 1t + 7110$

--> A] Determine the minimum point of the people leaving in the state P(t) and --> the actual year(s) from the starting period of existence. Give answer to the nearest --> whole number or to 1 decimal place.

--> B] Determine if there is any root(s)/zero(s) for P(t) function. Give any assumable --> reason to justify your answer.

-> C] 1) At what year will they accumulate a total number of people in number.

- --> state if it is fissible according to the function.
- --> 2) Determine their population rate after NUMBER IN WORDS (9) years of existence.
- --> D] 1) Find the intersection points of P(t) and D(t).
- --> 2) Find the intersection points of P(t) and M(t).
- --> 3) Find the intersection points of D(t) and M(t).
- --> E] Give the range and the domain of P(t), D(t), and M(t).
- F] If the population rate has increased by 66% (66 percent) of the initial
- --> population (amount). Find the actual year for this figure. Conclude if this rate is alright
- --> according to your answer and the percentage given.
- --> G] What is the slope of D(t) and M(t) and the corresponding slope's angle for each one.
- --> H] What is the extrema of the parabolas. Give a statement to conclude on

--> your answer.

- --> I] Determine which of the given function P(t) and Pq(t) has as enormous rate
- --> for increase in population. Give any reason to support your answer.
- --> J] 1) Find Dy/Dt, D^2y/D^2t, and D^3y/D^3t (F'(t), F"(t), and F"'(t).
- --> Find F '(4)and F '(15).
- --> Give any tangible reason to support your answer for the third derivative's result/answer.
- -> 2) Where will the graph of the third derivative lies/falls according to the equation obtain.
- --> K] Plot P(t), D(t), and M(t) from -7 to 2 i.e -7 <= t <= 2.

--> Produced by MATCAL Program

--> (A)

- --> Determine the minimum population of the land (starting population).
- --> The equation of the population growth of the state is given below
- $--> P(t) = 12t^2 + 3t + 22045$
- --> The minimum point of the function exists at X = -b / 2a
- $--> X = -3 / 2 \times 12$
- --> X = -3 / 24
- --> X (Minimum point) = 0.125
- --> X (Minimum point) = 0.13
- --> Substitute the value of X into the equation to arrive at the corresponding value of P(t)
- $--> P(t) = 12 \ge 0.125^{2} + 3 \ge 0.125 + 22045$
- --> P(0.13) = 0.1875 + 0.375 + 22045
- --> P(0.13) = 22045.5625
- --> P(0.13) = 22,045.56

--> The population of the State began about/around 1.5 months before the counting(census P(t)) was done

--> This means that they have been living in the land/area at the number of months specified above

--> before the function was given for the population growth of the state.

--> The starting population of the State at that time was (initial) = 22,045.56 people (male and female).

--> Produced by MATCAL Program

--> Solve for the roots/zero(s) of the given function

--> (B)

--> Solve for the zero(s)/roots of the equation (X intersect)

 $--> P(t) = 12t^2 + 3t + 22045$

--> a = 12 , b = 3 , c = 22045

--> Using the quadratic formula

 $--> X = [-b (+,-) Sqrt(b^2 - 4ac)] / 2a$

 $--> X = [-b + Sqrt(b^2 - 4ac)] / 2a$

 $--> X = [-b - Sqrt(b^2 - 4ac)] / 2a$

--> X = $[-3 + \text{Sqrt}(-3^2 - 4 \times 12 \times 22045)] / 2 \times 12$

--> X = $[-3 - Sqrt(-3^2 - 4 \times 12 \times 22045)] / 2 \times 12$

 $--> X = [-3 + Sqrt(9 - 1058160)] / 2 \times 12$

 $--> X = [-3 - Sqrt(9 - 1058160)] / 2 \times 12$

--> X = [-3 + Sqrt(9 - 1058160)] / 24

--> X = [-3 - Sqrt(9 - 1058160)] / 24

--> X = [-3 + Sqrt(-1058151)] / 24

- X = [-3 - Sqrt(-1058151)] / 24

--> X = [-3 + 1028.66466839296i] / 24

--> X = [-3 - 1028.66466839296i)] / 24

--> X = [-3 + 1028.66i] / 24

--> X = [-3 - 1028.66i)] / 24

--> The function returns an imaginary value for P(t) because it has no X

--> intersect (roots/zero(s)) of the function.

--> This means that the population must exist in an area or a land before any any

--> counting can be done for the population growth of the state or any area.

--> It can also be concluded that high number of people have occupied the area before the population.

--> was derived. Finally, increase in birth rate and moving in as existed before the population

--> function (equation was derived because it is based on the growth rate of the indigenes of the land/state.

--> Produced by MATCAL Program

--> (C - I)

--> Calculate the required year for the population given based on the time interval.

 $--> P(t) = 12t^2 + -3t + 22045$

--> P(t) = 15828 people

 $--> 15828 = 12t^2 + -3t + 22045$

--> Combine like terms by the constant on the left hand side to the right hand side.

 $--> 15828 - 15828 = 12t^2 + -3t + 22045 - 15828$

 $--> 0 = 12t^2 + -3t + 6217$

--> The new formula of the equation is given above.

--> a = 12, b = -3, c = 6217

--> Solve for the zero(s)/roots of the equation (X intersect)

--> Using the quadratic formula

 $--> X = [-b (+,-) Sqrt(b^2 - 4ac)] / 2a$

 $--> X = [-b + Sqrt(b^2 - 4ac)] / 2a$

 $--> X = [-b - Sqrt(b^2 - 4ac)] / 2a$

--> There is no solution for the function given which means that life does not exist on the land.

--> Probably, the function derived for the population of this particular region or area is not actually correct.

--> Finally, a growth function such as population equation cannot(must not) yield imaginary value as a result.

--> Produced by MATCAL Program

--> (C - II)

--> What will the population of the state/land be in 9 years to come.

--> The population function is given below as a function of time (t) in years.

 $--> P(t) = 12t^2 + 3t + 22045$

--> Substitute 9 into the function P(t) to arrive at the required population for that year.

 $--> P(9) = 12 \times 9^{2} + 3 \times 9 + 22045$

 $--> P(9) = 12 \ge 81 + 3 \ge 9 + 22045$

 $--> P(9) = 12 \times 81 + 27 + 22045$

--> P(9) = 972 + 27 + 22045

--> P(9) = 23044

--> P(9) = 23,044.00

--> In 9 years to come, the population of the state/land will be = 23,044.00 in number.

--> An addition of 998.44 people/citizens will be added to the population of the state/land after 9 years from now.

--> The equation given for the population growth of the state is a feasible one because it is an increasing function/equation.

--> End of problem C1 and C2

--> Produced by MATCAL Program

--> Produced by MATCAL Program

-->(F)

--> Determine the percentage increase of P(t) according to the given percentage with the corresponding year(t).

--> The percentage increase in population is 60 % (percent).

--> The equation of the population growth of the state is given below

 $--> P(t) = 11t^2 + 5t + 20000.568$

- --> The percentage increase in population is = $60 / 100 \times 22045.5625$
- --> The percentage increase in population is $= 0.6 \times 22045.5625$
- --> The new total population number is = $22045.5625 + 60 / 100 \times 22045.5625$
- \rightarrow The new total population number is = 22045.5625 + 13227.3375
- --> The new total population number is = 35272.9
- --> The new total population number is = 35,272.90
- --> The new total population number is = 35,272.90 = P(t)

--> P(t) = 35,272.90

 $--> 35,272.90 = 11t^2 + 5t + 20000.568$

--> Combine like terms together i.e move the left constant to the right side by subtracting it from both sides.

 $-->35,272.90 - 35,272.90 = 11t^2 + 5t + 20000.568 = 35,272.90$

 $--> 0 = 11t^{2} + 5t + 20000.568 = 35,272.90$

 $--> 0 = 11t^2 + 5t + -15272.332$

--> The new derived function is written below.

 $--> 0 = 11t^{2} + 5t - 15272.332$

--> Solve for the value of t using the quadratic formula.

 $--> X = [-B (+ \& -) x Sqrt(b^2 - 4ac)] / 2a$

--> a = 11, b = 5, c = -15272.332

--> $t = [-(5) + Sqrt(5^2 - 4x11x - 15272.332)] / 2x11$

--> $t = [-(5) - Sqrt(5^2 - 4x11x - 15272.332)] / 2x11$

--> t = $[-5 + \text{Sqrt}(5^2 - 4 \text{ x}11 \text{ x} - 15272.332)] / 2 \text{ x} 11$

- --> t = $[-5 \text{Sqrt}(5^2 4x11x 15272.332)]/2x11$
- --> t = [-5 + Sqrt(25 + 671982.608)] / 22
- --> t = [-5 Sqrt(25 671982.608)] / 22
- --> t = [-5 + Sqrt(672007.608)] / 22
- --> t = [-5 Sqrt(672007.608)] / 22
- --> t = [-5 + 819.760701668481] / 22
- --> t = [-5 819.760701668481]/22
- --> t = 814.760701668481 / 22
- --> t = -824.760701668481 / 22
- --> t = 37.0345773485673
- --> t = -37.4891228031128
- --> t = 37.03
- --> t = -37.49
- --> Since a positive time (t) is required, the only valid answer for t = 37.03
- --> t = 37 years : 0.41 months

--> The population will reach 35,272.90 in 37 years : 0.41 months

--> from the day the function was given derived for the growth rate of the state/land. However, the negative

--> value/number must be fully discarded because it is an extraneous number which cannot be used.

-->---->

--> Produced by MATCAL Program

-->(G)

--> Calculate the slope of D(t) and M(t) and the corresponding slope's angle for each function.

--> D(t) = 50t - 280 , Death rate function/equation

--> M(t) = 100t + 120 , Migration function/Equation

--> To calculate the slope of D(t) and M(t), substitute zero(0) and ten(10) for t in each equation to

--> get/derive the corresponding value for M(t) and D(t) on the vertical axis/line. However, you can use

--> any number/value you like for the substitution.

--> D(t) = 50t - 280, Death rate function/equation

--> For D(t), these values are obtain for the vertical component after substituting zero and ten into it.

- --> (0, -280); (10, 220)
- --> Slope (S) = (DY/DX) = [Y2 Y1] / [X2 X1]
- --> Slope (S) = (220 -280) / (10 0)
- --> Slope (S) = 500 / 10
- --> Slope (S) = 50
- --> Slope (S) = 50.00
- --> The Slope (S) of D(t) = 50.00
- --> M(t) = 100t + 120, Migration function/Equation

--> For M(t), these values are obtain for the vertical component after substituting zero and ten into it.

- -->(0,120);(10,1120)
- --> Slope (S) = (DY/DX) = [Y2 Y1] / [X2 X1]
- --> Slope (S) = (1120 120) / (10 0)
- --> Slope (S) = 1000 / 10
- --> Slope (S) = 100
- --> Slope (S) = 100.00
- --> The Slope (S) of M(t) = 100.00

-->--->

--> The Slope (S) of D(t) = 50.00

--> The Slope (S) of M(t) = 100.00

-->--->

--> The slope angle of M(t).89.3910814425623 d

--> The slope angle of D(t).88.8184877707 d

-->---->

--> The slope angle of M(t).89.39 d

--> The slope angle of D(t).88.82 d

-->---->

-->---->

--> Produced by MATCAL Program

--> (H)

--> (i)

--> What is the nature of the extrema of the parabola.

 \rightarrow The extrema of the parabola of P(t) is concave up. That is, the concavity of P(t) is upward which means

--> that the derived function has a minimum (minima) value. This confirms that P(t) is an increasing function

--> as years pass by. Also, the main feature that actually describes this behaviour is that the coefficient

--> of t^2 is a +Ve (positive) digit/number which is greater than zero. In summary, the population of P(t) increases

--> because of increase in birth rate and increase in the number of people emigrating to the state/place.

--> (ii)

 \rightarrow The function Pq(t) is also an increasing function. The population of Pq(t) increases year after year due to an increase in

--> in birth rate and increase in the number of people moving into the place to leave. The extrema of the

--> function Pq(t) is concave up which means that the function opens upward. Since the coefficient of t^2 is a +Ve (positive) real number

--> that is greater than zero. the function Pq(t) will always be increasing owing to this rule of polynomial. Pq(t) increases as year passes by.

--> Produced by MATCAL Program

--> (I)

-->(i)

 $--> P(t) = 11t^2 + 5t + 20000.568$

--> Pq(t) = 2t^2 + 5t + 10003.12

--> The minimum point of the function occurs at X = -b / 2a

--> The minimum point of the function occurs at t = -b / 2a

--> a = 2, b = 5, c = 10003.12

 $--> t = -1 \ge 5 / 2 \ge 2$

--> t = -5 / 4

--> t = -1.25

--> t = -1.25

--> Substitute the value of t into the given equation/function Pq(t) of the second state. --> Pq(t) = $2 \times -1.25^2 + 5 \times -1.25 + 10003.12$

--> Pq(-1.25) = 2 x 1.5625 + -6.25 + 10003.12

--> Pq(-1.25) = 3.125 + -6.25 + 10003.12

--> Pq(-1.25) = 9999.995

--> Pq(-1.25) = 10,000.00

--> At t = -1.25 , the function Pq(-1.25) = 10,000.00

--> The population of the state exists at 1 years : 3.00 months before the function was

--> given/derived for the population growth of the state. The population at that time is 10,000.00 people.

-->---

 $--> P(t) = 11t^2 + 5t + 20000.568$

 $--> Pq(t) = 2t^2 + 5t + 10003.12$

 $--> P(t) = 11 \ge 20^{2} + 5 \ge 20 + 20000.568$

 $--> P(20) = 11 \times 400 + 100 + 20000.568$

 $--> P(20) = 11 \times 400 + 100 + 20000.568$

--> P(20) = 4400 + 100 + 20000.568

--> P(20) = 24500.568

--> P(20) = 55ta3728r28

 $--> Pq(20) = 2 \ge 20^2 + 5 \ge 20 + 10003.12$

 $--> Pq(20) = 2 \times 400 + 100 + 10003.12$

 $--> Pq(20) = 40^{2} + 5 \times 20 + 10003.12$

--> Pq(20) = 10903.12

--> Pq(20) = 10,903.12

 \rightarrow At t = 20 years

--> P(20) = 24,500.57

--> Pq(20) = 10,903.12

--> At t = 20 years, P(t) = 24,500.57, Pq(t) = 10,903.12

--> The function P(t) has a maximum number of citizens at each interval because their starting population exceeds that of Pq(t).

--> Also, function P(t0 has a larger curvature than Pq(t) because their reproductive rate is higher than that of P(t)

--> including all migrating factors. Factors that may affect their reproductive rate/population rate are

good economy, educational advantage,

--> better agricultural system, presence of various social amenities and other infrastructures e.t.c.

- --> ----->
- --> Produced by MATCAL Program

--> (ii)

- --> Calculate the death D(t) and Migration M(t) rate 20 from now.
- --> D(t) = 50t 280 , Death rate function/equation
- --> M(t) = 100t + 120 , Migration function/Equation
- --> To calculate the required value of D(t) and M(t), substitute the given value 20 into each equation.
- $--> D(t) = 50 \times 20 280$, Death rate function/equation
- $--> M(t) = 100 \times 20 + 120$, Migration function/Equation
- --> D(t) = 1000 280 , Death rate function/equation
- --> M(t) = 2000 + 120 , Migration function/Equation
- --> D(20) = 720 , Death rate function/equation
- --> M(20) = 2120 , Migration function/Equation
- --> D(20) = 720.00 , Death rate function/equation
- --> M(20) = 2,120.00 , Migration function/Equation

--> The total number of people that will die in 20 years from now is 720.00, Death rate

--> The total number of people that will migrate from the place in 20 years from now is 2,120.00, Migration rate

--> Produced by MATCAL Program

--> (J)

--> (i)

--> Determine F'(t), F"(t), F"'(t)

--> Find F'(-2.5), F'(4)

--> The equation of the population growth of the state is given below

 $--> P(t) = 11t^2 + 5t + 20000.568$

 $--> P'(t) = 2 \times 11t + 5 \times 1$

- P'(t) = 22t + 5, the first derivative of P(t) which is Dy/Dx

--> P"(t) = 22 x 1, the second derivative of P(t) which is D^2y/D^2X

- P"(t) = 22, the second derivative of P(t) which is D^2y/D^2X

- P'''(t) = 22 x 0, the third derivative of P(t) which is D^3y/D^3X

--> P'''(t) = 0 , The third derivative of P(t) D^3y/D^3X is equal to zero because the derivative of a constant is zero.

- P'''(t) = 0 , The third derivative is equal to zero because the slope of a straight line function is always zero.

--> (ii)

--> P'(t) = 22t + 5, the first derivative of P(t) which is Dy/Dx

- P'(-2.5) = 22 x -2.5 + 5, the first derivative of P(t) which is Dy/Dx

- P'(4) = 22 x 4 + 5, the first derivative of P(t) which is Dy/Dx

-> P'(-2.5) = -55 + 5, the first derivative of P(t) which is Dy/Dx

--> P'(4) = 88 + 5, the first derivative of P(t) which is Dy/Dx

-> P'(-2.5) = -50, the first derivative of P(t) which is Dy/Dx

--> P'(4) = 93, the first derivative of P(t) which is Dy/Dx

-> P'(-2.5) = -50.00, the first derivative of P(t) which is Dy/Dx

- P'(4) = 93.00, the first derivative of P(t) which is Dy/Dx

--> End of all problems/questions

--> Select Plot graph from the menu to plot the required graphs.

--> Produced by MATCAL Program

--> Produced by MATCAL Program

-->(F)

--> Determine the percentage increase of P(t) according to the given percentage with the corresponding year(t).

--> The percentage increase in population is 66 % (percent).

--> The equation of the population growth of the state is given below

 $--> P(t) = 12t^2 + 3t + 22045$

--> The percentage increase in population is = $66 / 100 \times 22045.5625$

--> The percentage increase in population is $= 0.66 \times 22045.5625$

--> The new total population number is = $22045.5625 + 66 / 100 \times 22045.5625$

--> The new total population number is = 22045.5625 + 14550.07125

--> The new total population number is = 36595.63375

--> The new total population number is = 36,595.63

--> The new total population number is = 36,595.63 = P(t)

--> P(t) = 36,595.63

 $--> 36,595.63 = 12t^2 + 3t + 22045$

--> Combine like terms together i.e move the left constant to the right side by subtracting it from both sides.

 $--> 36,595.63 - 36,595.63 = 12t^2 + 3t + 22045 = 36,595.63$

 $--> 0 = 12t^2 + 3t + 22045 = 36,595.63$

 $--> 0 = 12t^2 + 3t + -14550.63$

--> The new derived function is written below.

 $--> 0 = 12t^2 + 3t - 14550.63$

--> Solve for the value of t using the quadratic formula.

--> $X = [-B (+ \& -) x Sqrt(b^2 - 4ac)] / 2a$

--> a = 12, b = 3, c = -14550.63

- --> $t = [-(3) + Sqrt(3^2 4x12x 14550.63)] / 2x12$
- --> t = $[-(3) \text{Sqrt}(3^2 4x12x 14550.63)] / 2x12$
- --> t = $[-3 + \text{Sqrt}(3^2 4x12x 14550.63)] / 2x 12$
- --> t = $[-3 \text{Sqrt}(3^2 4x_{12}x 14550.63)] / 2x 12$
- --> t = [-3 + Sqrt(9 + 698430.24)] / 24
- --> t = [-3 Sqrt(9 698430.24)] / 24
- --> t = [-3 + Sqrt(698439.24)] / 24
- --> t = [-3 Sqrt(698439.24)] / 24
- --> t = [-3 + 835.726773533073] / 24
- --> t = [-3 835.726773533073] / 24
- --> t = 832.726773533073 / 24
- --> t = -838.726773533073 / 24
- --> t = 34.6969488972114
- --> t = -34.9469488972114
- --> t = 34.70
- --> t = -34.95
- --> Since a positive time (t) is required, the only valid answer for t = 34.70
- --> t = 34 years : 8.36 months

--> The population will reach 36,595.63 in 34 years : 8.36 months

--> from the day the function was given derived for the growth rate of the state/land. However, the negative

--> value/number must be fully discarded because it is an extraneous number which cannot be used.

-->---->

--> Produced by MATCAL Program

--> (G)

--> Calculate the slope of D(t) and M(t) and the corresponding slope's angle for each function.

--> D(t) = 33t -125 , Death rate function/equation

--> M(t) = 75t + 130 , Migration function/Equation

--> To calculate the slope of D(t) and M(t), substitute zero(0) and ten(10) for t in each equation to

--> get/derive the corresponding value for M(t) and D(t) on the vertical axis/line. However, you can use

--> any number/value you like for the substitution.

--> D(t) = 33t -125 , Death rate function/equation

--> For D(t), these values are obtain for the vertical component after substituting zero and ten into it.

- --> Slope (S) = (DY/DX) = [Y2 Y1] / [X2 X1]
- --> Slope (S) = (205 -125) / (10 0)
- --> Slope (S) = 330 / 10
- --> Slope (S) = 33
- --> Slope (S) = 33.00
- --> The Slope (S) of D(t) = 33.00
- --> M(t) = 75t + 130 , Migration function/Equation

--> For M(t), these values are obtain for the vertical component after substituting zero and ten into it.

- --> Slope (S) = (DY/DX) = [Y2 Y1] / [X2 X1]
- --> Slope (S) = (880 130) / (10 0)

--> Slope (S) =
$$750 / 10$$

--> Slope (S) = 75 --> Slope (S) = 75.00 --> The Slope (S) of M(t) = 75.00-->---> --> The Slope (S) of D(t) = 33.00--> The Slope (S) of M(t) = 75.00-->---> --> The slope angle of M(t).89.2001985095885 d --> The slope angle of D(t).88.2287833756324 d -->----> \rightarrow The slope angle of M(t).89.20 d --> The slope angle of D(t).88.23 d -->---> -->----> --> Produced by MATCAL Program --> (H)

-->(i)

--> What is the nature of the extrema of the parabola.

--> The extrema of the parabola of P(t) is concave up. That is, the concavity of P(t) is upward which means

--> that the derived function has a minimum (minima) value. This confirms that P(t) is an increasing function

--> as years pass by. Also, the main feature that actually describes this behaviour is that the coefficient

--> of t^2 is a +Ve (positive) digit/number which is greater than zero. In summary, the population of P(t) increases

--> because of increase in birth rate and increase in the number of people emigrating to the state/place.

--> (ii)

--> The function Pq(t) is also an increasing function. The population of Pq(t) increases year after year due to an increase in

--> in birth rate and increase in the number of people moving into the place to leave. The extrema of the

--> function Pq(t) is concave up which means that the function opens upward. Since the coefficient of t^2 is a +Ve (positive) real number

--> that is greater than zero. the function Pq(t) will always be increasing owing to this rule of polynomial. Pq(t) increases as year passes by.

--> Produced by MATCAL Program

--> (I)

--> (i)

 $--> P(t) = 12t^2 + 3t + 22045$

 $--> Pq(t) = 5t^2 + 1t + 7110$

--> The minimum point of the function occurs at X = -b / 2a

--> The minimum point of the function occurs at t = -b / 2a

--> a = 5, b = 1, c = 7110

--> t = -1 x 1 / 2 x 5

--> t = -1 / 10

--> t = -0.1

--> t = -0.10

--> Substitute the value of t into the given equation/function Pq(t) of the second state. --> Pq(t) = 5 x $-0.1^{2} + 1 x -0.1 + 7110$

 $--> Pq(-0.1) = 5 \ge 0.01 + -0.1 + 7110$

--> Pq(-0.1) = 0.05 + -0.1 + 7110

--> Pq(-0.1) = 7109.95

--> Pq(-0.1) = 7,109.95

--> At t = -0.10, the function Pq(-0.1) = 7,109.95

--> The population of the state exists at 0 years : 1.20 months before the function was

--> given/derived for the population growth of the state. The population at that time is 7,109.95 people.

- $--> P(t) = 12t^2 + 3t + 22045$
- $--> Pq(t) = 5t^2 + 1t + 7110$
- $--> P(t) = 12 \times 23^{2} + 3 \times 23 + 22045$
- $--> P(23) = 12 \times 529 + 69 + 22045$
- $--> P(23) = 12 \times 529 + 69 + 22045$
- --> P(23) = 6348 + 69 + 22045
- --> P(23) = 28462
- --> P(23) = 0ta03r3
- $--> Pq(23) = 5 \ge 23^{2} + 1 \ge 23 + 7110$
- --> Pq(23) = 5 x 529 + 23 + 7110
- $--> Pq(23) = 115^2 + 1 \ge 23 + 7110$
- --> Pq(23) = 9778
- --> Pq(23) = 9,778.00
- --> At t = 23 years
- --> P(23) = 28,462.00
- --> Pq(23) = 9,778.00
- --> At t = 23 years, P(t) = 28,462.00, Pq(t) = 9,778.00

--> The function P(t) has a maximum number of citizens at each interval because their starting population exceeds that of Pq(t).

--> Also, function P(t0 has a larger curvature than <math>Pq(t) because their reproductive rate is higher than that of P(t)

--> including all migrating factors. Factors that may affect their reproductive rate/population rate are good economy, educational advantage,

--> better agricultural system, presence of various social amenities and other infrastructures e.t.c.

--> ----->

--> Produced by MATCAL Program

--> (ii)

--> Calculate the death D(t) and Migration M(t) rate 23 from now.

--> D(t) = 33t - 125, Death rate function/equation

--> M(t) = 75t + 130 , Migration function/Equation

- --> To calculate the required value of D(t) and M(t), substitute the given value 23 into each equation.
- $--> D(t) = 33 \times 23 125$, Death rate function/equation

 $--> M(t) = 75 \times 23 + 130$, Migration function/Equation

--> D(t) = 759 - 125 , Death rate function/equation

- --> M(t) = 1725 + 130 , Migration function/Equation
- --> D(23) = 634 , Death rate function/equation
- --> M(23) = 1855 , Migration function/Equation
- --> D(23) = 634.00, Death rate function/equation
- --> M(23) = 1,855.00, Migration function/Equation

--> The total number of people that will die in 23 years from now is 634.00, Death rate

--> The total number of people that will migrate from the place in 23 years from now is 1,855.00, Migration rate

--> Produced by MATCAL Program

--> (J)

--> (i)

- --> Determine F'(t), F"(t), F"'(t)
- --> Find F'(4), F'(15)

--> The equation of the population growth of the state is given below

- $P(t) = 12t^2 + 3t + 22045$
- $--> P'(t) = 2 \times 12t + 3 \times 1$
- --> P'(t) = 24t + 3, the first derivative of P(t) which is Dy/Dx
- --> P"(t) = 24 x 1, the second derivative of P(t) which is D^2y/D^2X
- -> P"(t) = 24, the second derivative of P(t) which is D^2y/D^2X
- -> P'''(t) = 24 x 0, the third derivative of P(t) which is D^3y/D^3X

-> P'''(t) = 0, The third derivative of P(t) D^3y/D^3X is equal to zero because the derivative of a constant is zero.

- P'''(t) = 0 , The third derivative is equal to zero because the slope of a straight line function is always zero.

--> (ii)

- P'(t) = 24t + 3, the first derivative of P(t) which is Dy/Dx

- --> P'(4) = 24 x 4 + 3, the first derivative of P(t) which is Dy/Dx
- --> P'(15) = 24 x 15 + 3, the first derivative of P(t) which is Dy/Dx
- P'(4) = 96 + 3, the first derivative of P(t) which is Dy/Dx
- P'(15) = 360 + 3, the first derivative of P(t) which is Dy/Dx
- P'(4) = 99, the first derivative of P(t) which is Dy/Dx
- P'(15) = 363, the first derivative of P(t) which is Dy/Dx
- P'(4) = 99.00, the first derivative of P(t) which is Dy/Dx
- --> P'(15) = 363.00, the first derivative of P(t) which is Dy/Dx

- --> End of all problems/questions
- --> Select Plot graph from the menu to plot the required graphs.
- --> Produced by MATCAL Program

Glad That You Participate With Us Now..... Thank You.....